P-Iris Lens Presentation

Problems with Current Iris Control Mechanisms

Hunting

- Conventional auto-iris lenses sometimes have problems finding the right iris position when a light source frequently changes. The result is that the iris will constantly open and close to search for the best position.
- To solve this "hunting" problem, an ND filter is used.
- However, resolution goes down if there is an ND filter.

Diffraction

- Diffraction increases as the iris opening gets smaller.
- This problem cannot be solved with conventional auto-iris lenses since the user cannot control the iris position.
- Diffraction is especially noticeable when using megapixel cameras with a small pixel size.
- Depth of Field is not Optimized
 - Conventional auto-iris lenses do not allow a user to eliminate shallow depth of field because they cannot control the iris position.

Hunting Problem (DC Auto-Iris Lens)

Conventional Method to Prevent the Hunting Effect

Solution: Use an ND filter to prevent the hunting effect.

Problem: ND filter decreases resolution because it is placed in front of the optical path.

ND Filter

Decreases Megapixel Camera Performance

Influence of Diffraction

Effects on the Image:

- Image will appear to be soft or blurry.
- Negative influence on contrast and sharpness.

Influence of Diffraction

Small F-Stop (Iris Open)

Large F-Stop (Iris Closed)

Cannot maximize megapixel resolution!

Experiment with P-Iris Lens

Influence of Diffraction

P-Iris Stops Closing

DC AI Gives Priority to Brightness

Aperture priority is important for megapixel systems.

P-Iris Lens Can Optimize Depth of Field

F2.0 – Iris Open

F22 – Iris Closed

Depending on the surveillance application, the ideal iris opening will vary. The optimal iris position can be selected with P-Iris control (cashier vs. corridor).

Kowa's New P-Iris Method

Iris Controlled by a Galvanometer

Iris Controlled by a P-Iris with Stepping Motors

Characteristics of the P-Iris

- The iris closing can stop before the effect of diffraction can influence the image quality.
- ND filter is not necessary so optimal resolution is guaranteed.
- You can set the best iris position for you application.

Iris Control Comparison Chart

	Galvanometer Iris	P-Iris
ND Filter	× (Decreased Resolution)	Ø
Effect of Diffraction on the Image	×	0
Cost	0	O (Motor for Iris)
Iris Control	Δ	0
Current Compatibility with Cameras	0	Δ
Hunting	0	0

